MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer
نویسندگان
چکیده
Tamoxifen is an endocrine therapy which is administered to up to 70% of all breast cancer patients with oestrogen receptor alpha (ERα) expression. Despite the initial response, most patients eventually acquire resistance to the drug. MicroRNAs (miRNAs) are a class of small non-coding RNAs which have the ability to post-transcriptionally regulate genes. Although the role of a few miRNAs has been described in tamoxifen resistance at the single gene/target level, little is known about how concerted actions of miRNAs targeting biological networks contribute to resistance. Here we identified the miRNA cluster, C19MC, which harbours around 50 mature miRNAs, to be up-regulated in resistant cells, with miRNA-519a being the most highly up-regulated. We could demonstrate that miRNA-519a regulates tamoxifen resistance using gain- and loss-of-function testing. By combining functional enrichment analysis and prediction algorithms, we identified three central tumour-suppressor genes (TSGs) in PI3K signalling and the cell cycle network as direct target genes of miR-519a. Combined expression of these target genes correlated with disease-specific survival in a cohort of tamoxifen-treated patients. We identified miRNA-519a as a novel oncomir in ER+ breast cancer cells as it increased cell viability and cell cycle progression as well as resistance to tamoxifen-induced apoptosis. Finally, we could show that elevated miRNA-519a levels were inversely correlated with the target genes' expression and that higher expression of this miRNA correlated with poorer survival in ER+ breast cancer patients. Hence we have identified miRNA-519a as a novel oncomir, co-regulating a network of TSGs in breast cancer and conferring resistance to tamoxifen. Using inhibitors of such miRNAs may serve as a novel therapeutic approach to combat resistance to therapy as well as proliferation and evasion of apoptosis in breast cancer.
منابع مشابه
بررسی بیوانفورماتیکی میانکنش بین میکرو RNAها با ژنهای دخیل در عود مجدد سرطان پستان درمان شده با تاموکسیفن
Background and Objective: Tamoxifen is the most commonly used treatment for the patients with breast cancer called ER +, which prevents the expression of genes that are effective in the growth and proliferation of cancer cells by estrogen. Resistant to Tamoxifen is a major clinical problem in breast cancer treatment. In recent studies, the role of microRNAs in tamoxifen resistance has been rais...
متن کاملMiR-490-5p Functions as an OncomiR in Breast Cancer by Targeting NFATc4
Breast cancer is a serious health problem worldwide in women. MicroRNAs are small non-coding RNAs of 18–25 nucleotides in length that post-transcriptionally modulate gene expression. MiR-490 has been reported as a tumor suppressor and oncomiR microRNA in breast cancer with two separate targets, NFAT and Rho. NFAT is one of the targets for miR-490 but the relationship between hsa</e...
متن کاملmiR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cancer.
The miR-221/222 cluster has been demonstrated to function as oncomiR in human cancers. miR-221/222 promotes epithelial-to-mesenchymal transition (EMT) and confers tamoxifen resistance in breast cancer. However, the effects and mechanisms by which miR-221/222 regulates breast cancer aggressiveness remain unclear. Here we detected a much higher expression of miR-221/222 in highly invasive basal-l...
متن کاملTargeting a Novel ER/HOXB7 Signaling Loop in Tamoxifen-Resistant Breast Cancer.
The majority of patients with breast cancer present with an estrogen receptor-positive (ER(+)) tumor, and the endocrine agent tamoxifen is a mainstay for their treatment. Unfortunately, however, resistance remains a major problem because most patients who respond eventually have a recurrence. Thus, an enduring challenge in the breast cancer field is to identify mechanisms underlying tamoxifen r...
متن کاملMicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene.
MicroRNA-155 (miR-155) is overexpressed in many human cancers; however, the mechanisms by which miR-155 functions as a putative oncomiR are largely unknown. Here, we report that the tumor suppressor gene suppressor of cytokine signaling 1 (socs1) is an evolutionarily conserved target of miR-155 in breast cancer cells. We found that mir-155 expression is inversely correlated with socs1 expressio...
متن کامل